黄老师 发表于 2019-9-29 16:23:38

天津大学2019秋《应用统计学》离线作业答案(五组总)

第一组:一、      计算题(每小题25分,共50分)
1、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:
每包重量(克)      包数(包)f      x      xf      x-
(x- )2f
148—149      10      148.5      1485      -1.8      32.4
149—150      20      149.5      2990      -0.8      12.8
150—151      50      150.5      7525      0.2      2.0
151—152      20      151.5      3030      1.2      28.8
合计      100      --      15030      --      76.0
要求:
(1)计算该样本每包重量的均值和标准差;
(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);
(3)在ɑ=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);
(写出公式、计算过程,标准差及置信上、下保留3位小数)
2、一种新型减肥方法自称其参加者在第一个星期平均能减去至少8磅体重.由40名使用了该种方法的个人组成一个随机样本,其减去的体重的样本均值为7磅,样本标准差为3.2磅.你对该减肥方法的结论是什么?(α=0.05,μα/2=1.96, μα=1.647)
二、      简答题(每小题25分,共50分)
1、      简述算术平均数、几何平均数、调和平均数的适用范围。
2、      假设检验的基本依据是什么?
第二组:
一、      计算题(每小题25分,共50分)
1、某一汽车装配操作线完成时间的计划均值为2.2分钟。由于完成时间既受上一道装配操作线的影响,又影响到下一道装配操作线的生产,所以保持2.2分钟的标准是很重要的。一个随机样本由45项组成,其完成时间的样本均值为2.39分钟,样本标准差为0.20分钟。在0.05的显著性水平下检验操作线是否达到了2.2分钟的标准。
2、某商店为解决居民对某种商品的需要,调查了100户住户,得出每月每户平均需要量为10千克,样本方差为9。若这个商店供应10000户,求最少需要准备多少这种商品,才能以95%的概率满足需要?
二、简答题(每小题25分,共50分)
1.      解释相关关系的含义,说明相关关系的特点。
2.      为什么对总体均值进行估计时,样本容量越大,估计越精确?
第三组:
一、      计算题(每小题25分,共50分)
1、设总体X的概率密度函数为
其中 为未知参数, 是来自X的样本。
(1)试求 的极大似然估计量 ;
(2)试验证是 的无偏估计量。
2、某商店为解决居民对某种商品的需要,调查了100户住户,得出每月每户平均需要量为10千克,样本方差为9。若这个商店供应10000户,求最少需要准备多少这种商品,才能以95%的概率满足需要?
二、      简答题(每小题25分,共50分)
1、      统计调查的方法有那几种?
2、      时期数列与时点数列有哪些不同的特点?
第四组:
一、      计算题(每小题25分,共50分)
1、某地区社会商品零售额资料如下:
年份      零售额(亿元)y      t      t2      ty      t      t2      ty
1998      21.5      1      1      21.5      -5      25      -107.5
1999      22.0      2      4      44      -3      9      -66
2000      22.5      3      9      67.5      -1      1      -22.5
2001      23.0      4      16      92      1      1      23
2002      24.0      5      25      120      3      9      72
2003      25.0      6      36      150      5      25      125
合计      138.0      21      91      495      0      70      24
要求:1)用最小平方法配合直线趋势方程:
      2)预测2005年社会商品零售额。(a,b及零售额均保留三位小数,
2、某商业企业商品销售额1月、2月、3月分别为216,156,180.4万元,月初职工人数1月、2月、3月、4月分别为80,80,76,88人,试计算该企业1月、2月、3月各月平均每人商品销售额和第一季度平均每月人均销售额。(写出计算过程,结果精确到0.0001万元\人)
二、      简答题(每小题25分,共50分)
1、      表示数据分散程度的特征数有那几种?
2、回归分析与相关分析的区别是什么?
第五组:
一、      计算题(每小题25分,共50分)
1、根据下表中Y与X两个变量的样本数据,建立Y与X的一元线性回归方程。
Y          X      5      10      15      20         
120      0      0      8      10      18
140      3      4      3      0      10
fx      3      4      11      10      28
2、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:
每包重量(克)      包数(包)f      x      xf      x-
(x- )2f
148—149      10      148.5      1485      -1.8      32.4
149—150      20      149.5      2990      -0.8      12.8
150—151      50      150.5      7525      0.2      2.0
151—152      20      151.5      3030      1.2      28.8
合计      100      --      15030      --      76.0
要求:
(1)计算该样本每包重量的均值和标准差;
(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);
(3)在ɑ=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);
(写出公式、计算过程,标准差及置信上、下保留3位小数)
二、简答题(每小题25分,共50分)
1.      区间估计与点估计的结果有何不同?
2.      统计调查的方法有那几种?
附件是答案

页: [1]
查看完整版本: 天津大学2019秋《应用统计学》离线作业答案(五组总)