《流体力学与流体机械模拟题B及参考答案》山东大学测试答案
流体力学与流体机械 模拟题B一、判断题
(1)在惯性坐标系下的稳态流动,在非惯性坐标系中保持不变。( )
(2)流动的维数与流场速度分量数一致。( )
(3)在非稳态流动的流场中,不同时刻具有不同流线。( )
(4)流场中流体所受的磁场力和电场力均属于质量力的范畴。( )
(5)两种不同流体的分界面是等势面。( )
(6)正压流场中,流体仅受正应力的作用( )
(7)在非惯性坐标系下,密度恒定的静止流体中的压力仅为流体深度的函数,而旋转容器中则为深度和角速度的函数。( )
(8)运动粘度和动力粘度都是流体的固有属性。( )
(9)伯努利方程仅适用于不可压缩的稳态流体。( )
二、说明题
(1)连续介质模型的内容、意义及其适用范围
(2)描述流体运动的两种方法
(3)从系统和控制体的概念出发,描述流体系统动量守恒方程式
(4)伯努利方程的物理意义及其使用说明
三、简答题
(1)实际压缩循环和理论压缩循环主要区别。
(2)论述离心式压缩机与管网联合工作时的工作点的稳定性问题。
(3)机器故障诊断过程的主要环节有哪些?
(4)压缩机设计性热力计算的步骤有哪些?
(5)说明离心泵H—Q线的作图步骤。
(6)往复式压缩机往复惯性力能否用加装平衡质量的方式平衡,请给予说明。
四、流体经过突然扩大的管道时,在控制体(如右图所示)中稳定流动。截面0-0、1-1、2-2上平均流速分别为、、,平均压力为、、,且认为,忽略表面摩擦。证明:。
五、流场中任意点的速度为:,,。求流场流线方程和迹线方程。
流体力学与流体机械模拟题B参考答案
二、说明题:
(1)质量分布连续:用密度作为表示流体质量的物理量,
运动连续:在取定的区域和时间内,质量连续的流体处于运动状态时,各部分不会分裂,
亦不穿插,
内应力连续:
对上述三个函数要求在定义域中是连续可微的,可采用解析的方法研究;上述假设除稀薄空气和激波等少数情况下的大多数场合均适用。
(2)拉格朗日法:跟踪追击法,通过研究流场中单个质点的运动规律,进而研究流体的整体规律,将质点表示为空间坐标和时间的函数,如位移,a,b,c为拉格朗日变量。
欧拉法:观察点法,将流体的运动和物理参数直接表示为空间坐标和时间的函数,
(3)系统是确定不变的物质集合,但体积形状可变。控制体质量可以传输,但体积不变,位置确定。控制面上可以有力的传递,能量和质量交换
动量守恒方程:
作用于系统合外力=控制体净输出的动量流量+控制体内动量变化率
(4)伯努利方程为:,体现了流体运动遵循机械能守恒原理。理想不可压流体在稳态流动中,动能、位能、压力能可以相互转化,但总能量守恒
伯努利方程涉及无热传递和轴功为零的不可压缩流动过程:
三、简答题
1实际压缩循环和理论压缩循环主要区别。
对理论压缩循环,其主要特征为
(1)气体通过进排气阀时无压力损失,且进排气压力没有波动,保持恒定
(2)工作腔内无余隙容积,缸内的气体被全部排出
(3)工作腔作为一个孤立体与外界无热交换
(4)气体压缩过程指数为定值
(5)气体无泄漏
对实际压缩循环,其主要特征为
(1)工作腔内存在余隙容积
(2)气体通过进排气阀和管道时存在摩擦,产生压力损失,且气缸中的进气压力低于进气管中的名义进气压力,气缸中的排气压力高于排气管中的名义排气压力
(3)工作腔与外界存在热交换
(4)气体压缩过程指数不为定值
(5)气缸容积不可能绝对密封,气体有泄漏
2论述离心式压缩机与管网联合工作时的工作点的稳定性问题。
当管网曲线相交于压缩机性能曲线的右分支,交点处与压缩机曲线相切具有负斜率,工况稳定:;否则不稳定:
3机器故障诊断过程的主要环节有哪些?
(1) 机器状态参数的检测
(2)信号处理;提取故障特征信息
(3) 确定故障发生的部位、类型和程度
(4)对确定的故障作防治处理与监控
4压缩机设计性热力计算的步骤有哪些?
(1)压缩机结构形式与方案选择:计算总压力比选择级数;由排气量、级数、压缩机用途等选择合理的结构形式、各级缸的布置。
(2)确定各级压力比的分配
(3)计算与确定各级的系数
(4)计算各级气缸行程容积和直径
(5)计算各列的最大活塞力,功率、效率
(6)选择原动机
5说明离心泵H—Q线的作图步骤
由可得出曲线
由,纵坐标乘以环流系数得到
③ 在中,纵坐标减去及中的纵坐标得
④ 横坐标向左移动中的量,从而得到线
6往复式压缩机往复惯性力不能用加装平衡质量的方式平衡,因为虽然平衡了轴向的惯性力,但在垂直方向又增加了一个力
四、证:设截面0-0、1-1、2-2上的质量流量分别q0、q1、q2。由质量守恒定律知
由于流体不可压缩,则有,所以
则
列0-0和1-1面上的伯努利方程,又已知忽略表面摩擦,有
由题意知,,可得
根据动量守恒定律,在所选择的控制体中,对稳态流动有
又
对上式,有,
故有
所以
五、流场中任意点的速度为:,,。求流场流线方程和迹线方程。
解:对,,。
流场中的流线满足
故,积分得。
又由得,所以
故流线方程为
迹线方程为,,。
故有,,。
积分可得迹线方程为。
www.ap5u.com
页:
[1]