黄老师 发表于 2013-8-13 08:34:45

吉大13春《测量学》第三章角度测量拓展资源

吉大13春《测量学》第三章角度测量拓展资源
精密经纬仪介绍
一、电子经纬仪
世界上第一台电子经纬仪(electronic theodolite)于1968年研制成功,80年代初生产出商品化的电子经纬仪。
电子经纬仪与光学经纬仪的主要区别在于读数系统的不同,它是利用光电转换原理将通过度盘的光信号转变为电信号,再将电信号转变为角度值,并显示在屏幕上或者存储在仪器中。
电子经纬仪的测角系统有三种:编码度盘测角系统、光栅度盘测角系统和动态测角系统。现在大部分的电子经纬仪都是采用光栅度盘测角系统。
光栅度盘测角系统
如图,这个玻璃圆盘就是电子经纬仪的度盘,在度盘上均匀地按一定的密度刻划有透明与不透明的辐射状条纹,这就构成了光栅度盘。不透明的条纹就是光栅,相邻光栅之间的距离就是栅距,通常光栅的宽度与栅距相等,如图,光栅与间隙的宽度均为a。
由于光栅不透光,而缝隙透光。因此,我们在光栅度盘的下方安置一个发光二极管用来发射光线,在度盘上方安置一个光敏二极管用来接收光线,将光信号转变为电信号。这样光栅度盘转动的时候,我们就可以利用一个计数器来计算光敏二极管接收到的光线的次数,从而就知道光栅度盘转动的栅距数,根据栅距数就可以求出相应的角度值。
从测角的原理可以看出,光栅度盘的栅距就相当于光学度盘的分划,栅距越小,则角度分划值越小,测角的精度越高。例如,在一个80mm直径的光栅度盘上,如果刻划有12500条细线(每毫米50条),那么栅距的分划值为1分44秒。这个精度并不算高,如果要进一步提高精度,那么就要进一步细分,而对于现在的技术水平来说,要分得非常细是有困难的,就算能分得非常细,进行计数时也很难十分准确。所以要提高光栅度盘测角的精度还需要另想办法,那么可以采用莫尔条纹技术。
什么是莫尔条纹呢?将两块密度相同的光栅重叠,并使它们的刻划线相互倾斜一个很小的角度,此时就会出现明暗相间的条纹,该条纹称为摩尔条纹。 我们在光栅度盘的上面叠加一个指示光栅,使它们之间形成莫尔条纹。
莫尔条纹有几个特点:
1. 在两光栅沿刻线的垂直方向作相对移动时,莫尔条纹在刻线方向移动。当光栅度盘转动一个栅距,那么莫尔条纹就会移动一个周期。这样,通过光电管中的电流的周期数,就是度盘所转过的光栅数。
2. 条纹亮度按正弦规律周期性变化。那么光栅度盘转动的时候,在光敏二极管中流过的电流也会是按照正弦规律周期性变化的。
3. 如果两光栅的倾角θ越小,则相邻明暗条纹间的间距ω(简称纹距)就越大,其关系为:

ω为纹距, d为栅距,θ为两光栅之间倾角,ρ’为一弧度所对应的分数,为3438’。
       当θ=20’,纹距ω=172d,可以看出,纹距将栅距放大了很多倍。由于栅距很小,细分很困难。那么现在纹距将栅距放大了,对纹距细分相对容易。因此在电流的一个正弦周期内插入若干个脉冲信号,然后对脉冲信号计数就可以测出光栅度盘转动不足一个栅距的角度值,这实际上就相当于将精度提高了数倍。
二、激光经纬仪
激光经纬仪除了具有传统经纬仪的功能之外,还可以提供一条可见的激光光束,因此就可以用于准直测量,为土建安装等工作提供一条基准线。
激光经纬仪主要用于准直测量,准直测量就是定出一条标准的直线,作为土建安装等施工放样的基准线。
J2-JDB激光经纬仪是在DJ2光学经纬仪上设置了一个半导体激光发射装置,将发射的激光导入望远镜的视准轴方向,从望远镜物镜端发射,激光光束与望远镜视准轴保持同轴、同焦。
激光经纬仪除具有光学经纬仪的所有功能外,还可以提供一条可见的激光光束,广泛应用于高层建筑的轴线投测、隧道测量、大型管线的铺设、桥梁工程、大型船舶制造、飞机形架安装等领域。)
页: [1]
查看完整版本: 吉大13春《测量学》第三章角度测量拓展资源