应用统计学 计算该样本每包重量的均值和标准差;
应用统计学要求:一、独立完成,下面已将五组题目列出,请按照学院平台指定的做题组数作答,每人只答一组题目,多答无效,满分100分; 平台查看做题组数操作:学生登录学院平台→系统登录→学生登录→课程考试→离线考核→离线考核课程查看→做题组数,显示的数字为此次离线考核所应做哪一组题的标识; 例如:“做题组数”标为1,代表学生应作答“第一组”试题; 二、答题步骤:1. 使用A4纸打印学院指定答题纸(答题纸请详见附件);2. 在答题纸上使用黑色水笔按题目要求手写作答;答题纸上全部信息要求手写,包括学号、姓名等基本信息和答题内容,请写明题型、题号;三、提交方式:请将作答完成后的整页答题纸以图片形式依次粘贴在一个Word 文档中上传(只粘贴部分内容的图片不给分),图片请保持正向、清晰;1. 上传文件命名为“中心-学号-姓名-科目.doc” 2. 文件容量大小:不得超过20MB。提示:未按要求作答题目的作业及雷同作业,成绩以0分记! 题目如下:第一组:一、 计算题(每小题25分,共50分)1、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:每包重量(克)包数(包)fxxfx-file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png(x-file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png)2f
148—14910148.51485-1.832.4
149—15020149.52990-0.812.8
150—15150150.575250.22.0
151—15220151.530301.228.8
合计100--15030--76.0
要求:(1)计算该样本每包重量的均值和标准差;(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);(3)在ɑ=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);(写出公式、计算过程,标准差及置信上、下保留3位小数) 2、一种新型减肥方法自称其参加者在第一个星期平均能减去至少8磅体重.由40名使用了该种方法的个人组成一个随机样本,其减去的体重的样本均值为7磅,样本标准差为3.2磅.你对该减肥方法的结论是什么?(α=0.05,μα/2=1.96, μα=1.647)二、简答题(每小题25分,共50分)1、简述算术平均数、几何平均数、调和平均数的适用范围。2、假设检验的基本依据是什么? 第二组:一、 计算题(每小题25分,共50分)1、某地区社会商品零售额资料如下:
年份零售额(亿元)ytt2tytt2ty
199821.51121.5-525-107.5
199922.02444-39-66
200022.53967.5-11-22.5
200123.0416921123
200224.05251203972
200325.0636150525125
合计138.0219149507024
要求:1)用最小平方法配合直线趋势方程: 2)预测2005年社会商品零售额。(a,b及零售额均保留三位小数, 2、某商业企业商品销售额1月、2月、3月分别为216,156,180.4万元,月初职工人数1月、2月、3月、4月分别为80,80,76,88人,试计算该企业1月、2月、3月各月平均每人商品销售额和第一季度平均每月人均销售额。(写出计算过程,结果精确到0.0001万元\人)二、 简答题(每小题25分,共50分)1、表示数据分散程度的特征数有那几种? 2、 回归分析与相关分析的区别是什么? 第三组:一、 计算题(每小题25分,共50分)1、下表中的数据是主修信息系统专业并获得企业管理学士学位的学生,毕业后的月薪(用y表示)和他在校学习时的总评分(用x表示)的回归方程。
总评分月薪/美元总评分月薪/美元
2.628003.23000
3.431003.53400
3.635002.93100
2、设总体X的概率密度函数为file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png其中file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png为未知参数,file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png是来自X的样本。(1)试求file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png的极大似然估计量file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png;(2)试验证file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png 是file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png的无偏估计量。 二、简答题(每小题25分,共50分)1. 在统计假设检验中,如果轻易拒绝了原假设会造成严重后果时,应取显著性水平较大还是较小,为什么?2. 加权算术平均数受哪几个因素的影响?若报告期与基期相比各组平均数没变,则总平均数的变动情况可能会怎样?请说明原因。 第四组:一、 计算题(每小题25分,共50分)1、某一汽车装配操作线完成时间的计划均值为2.2分钟。由于完成时间既受上一道装配操作线的影响,又影响到下一道装配操作线的生产,所以保持2.2分钟的标准是很重要的。一个随机样本由45项组成,其完成时间的样本均值为2.39分钟,样本标准差为0.20分钟。在0.05的显著性水平下检验操作线是否达到了2.2分钟的标准。file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png2、某商店为解决居民对某种商品的需要,调查了100户住户,得出每月每户平均需要量为10千克,样本方差为9。若这个商店供应10000户,求最少需要准备多少这种商品,才能以95%的概率满足需要?二、简答题(每小题25分,共50分)1. 解释相关关系的含义,说明相关关系的特点。2. 为什么对总体均值进行估计时,样本容量越大,估计越精确? 第五组:一、 计算题(每小题25分,共50分)1、根据下表中Y与X两个变量的样本数据,建立Y与X的一元线性回归方程。
Y file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png X5101520file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png
1200081018
140343010
fx34111028
2、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:
每包重量(克)包数(包)fxxfx-file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png(x-file:///C:/Users/ADMINI~1/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png)2f
148—14910148.51485-1.832.4
149—15020149.52990-0.812.8
150—15150150.575250.22.0
151—15220151.530301.228.8
合计100--15030--76.0
要求:(1)计算该样本每包重量的均值和标准差;(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);(3)在ɑ=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);(写出公式、计算过程,标准差及置信上、下保留3位小数)二、简答题(每小题25分,共50分)1. 区间估计与点估计的结果有何不同? 2. 统计调查的方法有那几种?
页:
[1]